ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
D. R. Simpson, M. M. R. Williams, S. Simons
Nuclear Science and Engineering | Volume 101 | Number 3 | March 1989 | Pages 259-268
Technical Paper | doi.org/10.13182/NSE89-A23613
Articles are hosted by Taylor and Francis Online.
A theoretical treatment is developed for the deposition and transport of an aerosol in a multicompartment system in which there exists a pressure-induced gas flow. Based on a solution of the relevant gas equations, the aerosol equation is first formulated and then solved numerically by both discretization and moments techniques. The former method is more accurate, but the complex nature of the problem means that the computing time required can be prohibitive, especially when the number of compartments is large. The moments technique, based on a gamma or lognormal distribution, requires substantially less computing time, and to estimate its accuracy, a validation comparison has been made with the discretization method. The technique was then applied to two multicompartment accident situations. Results show that the moments method based on the gamma distribution is significantly more accurate than the lognormal-based one and is also in close agreement with the results from the AEROSIM code.