ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Markku Rajamäki, Frej Wasastjerna
Nuclear Science and Engineering | Volume 101 | Number 1 | January 1989 | Pages 41-47
Technical Paper | doi.org/10.13182/NSE89-A23593
Articles are hosted by Taylor and Francis Online.
The reactivity effects caused by fragmentation of nuclear fuel and by simultaneous cooling of the fragments are described. A series of light water reactor (LWR) cases and three speculative scenarios for the Chernobyl accident are considered. Calculations were carried out with the LWR cell burnup code CASMO-HEX. Fragmentation is described by increasing the number of fuel pieces while decreasing their diameter. Cooling is considered to occur as quasi-stationary. Relative movement of the fragments and the coolant is taken into account by varying the water/fuel ratio. Under certain circumstances, substantial reactivity increases are found to occur in both reactor types. These may have contributed significantly to the severity of the Chernobyl accident.