ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
D. Ferenc, B. Antolković, G. Paić, M. Zadro, S. Blagus
Nuclear Science and Engineering | Volume 101 | Number 1 | January 1989 | Pages 1-7
Technical Paper | doi.org/10.13182/NSE89-A23590
Articles are hosted by Taylor and Francis Online.
A metallic 9Be target was bombarded with 14.6-MeV neutrons. Double-differential cross sections were measured for the (n, α) reaction in the angular range from 0 to 100 deg. The measured alpha-particle spectra and complementary neutron spectra from the literature were analyzed in terms of a combination of sequential and simultaneous breakups. The results show that ∼50% of the total inelastic cross section is due to simultaneous breakup n + 9Be → n + α + 5He, while the remainder is mainly due to neutron inelastic scattering to the three excited states of 9Be: 2.43, 6.76, and 11.28 MeV. This analysis gives evidence of the validity of the constant matrix element model and contradicts evaluations that ignore the simultaneous breakup contributions.