ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Toshikazu Takeda, Hironobu Unesaki, Tamotsu Sekiya, Keisho Shirakata
Nuclear Science and Engineering | Volume 100 | Number 4 | December 1988 | Pages 538-548
Technical Paper | doi.org/10.13182/NSE88-A23586
Articles are hosted by Taylor and Francis Online.
To solve the problems encountered in the analysis of the large homogeneous and heterogeneous fast critical assemblies, Zero-Power Plutonium Reactor (ZPPR) 9, 10, and 13, we have revisited the analysis using improved methods. Two-dimensional cell calculations, cell calculations using multidrawer cell models, and three-dimensional transport theory core calculations were introduced. Using these methods, the discrepancies in the calculation-to-experiment (C/E) values of keff for the fast critical assemblies was reduced. The use of the multidrawer model reduced the C/E spatial dependency of the control rod worths in the ZPPR-10 cores. To investigate the remaining problems of the spatial dependence of the C/E values of reaction rate distribution and control rod worth, we have adjusted a cross-section set obtained from the JENDL-2 library using the integral experiments. The cross-section changes, particularly for the diffusion coefficient, 238U scattering and capture, and 239Pu fission cross sections, have corrected the spatial dependence, as well as the overestimation of the 238U capture to 239Pu fission rate ratio and sodium void worth.