ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
B. M. Rothleder
Nuclear Science and Engineering | Volume 100 | Number 4 | December 1988 | Pages 479-489
Technical Paper | doi.org/10.13182/NSE88-A23581
Articles are hosted by Taylor and Francis Online.
Measurements made during cycle 1 operation of Commonwealth Edison Company’s Zion Unit 2 pressurized water reactor core were used to validate the Electric Power Research Institute Advanced Recycle Methodology Program. In addition to the usual reaction rate and axial trace measurements for determining power distributions, gamma scan measurements were available to provide additional data to validate the calculated power shapes. The parallel occurrence of gamma scan measurements and standard nuclear instrumentation measurements provided a unique opportunity to intercompare the results of these measurement methods. The calculated X-Y gamma scan behavior supported the behavior of the calculated X-Y reaction rates. The measured X-Y gamma scans were found to be more accurate than the measured X- Y reaction rates, with the latter showing significant differences among some symmetrically located assemblies. For both types of measurement, however, the modeling of the asymmetrically loaded assembly located furthest in the core periphery produced the poorest results. The axial gamma scan calculation proved very accurate except at the inlet and outlet regions.