ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
M. A. Porracchia, M. M. Reocreux, M. C. Rousseau
Nuclear Science and Engineering | Volume 100 | Number 4 | December 1988 | Pages 375-379
Technical Paper | doi.org/10.13182/NSE88-A23569
Articles are hosted by Taylor and Francis Online.
During the past few years, there has been an increasing effort to understand the behavior of nuclear power plants (NPPs) in normal and abnormal situations. To achieve this goal, large computer codes that allow the description of two-phase flows with sources and sinks of mass and heat have been built in many countries. The analysis of NPP situations often requires a large computation time, so efficient calculational methods are needed to minimize the cost of these studies. Thermal-hydraulic models and calculational methods used in the codes are reviewed. Computational methods and solution procedures involved in some European operating and safety codes are described. Developments concerning code optimization and adaptation of numerical methods to the new supercomputer architectures are discussed.