ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
I. Pázsit, O. Glöckler+
Nuclear Science and Engineering | Volume 99 | Number 4 | August 1988 | Pages 313-328
Technical Paper | doi.org/10.13182/NSE88-A23561
Articles are hosted by Taylor and Francis Online.
In the first two papers of this series, a complete algorithm was elaborated and tested for the diagnostics of vibrating control rods in pressurized water reactors (PWRs). Although the method was thoroughly tested in numerical experiments where even the effects of background noise were accounted for, the influence of the several approximations regarding the underlying neutron physical and mechanical model of the applicability of the method in real applications could not be properly estimated. In August 1985, in-core self-powered neutron detector spectra taken at Paks-2, a PWR in Hungary, indicated the presence of an excessively vibrating control rod. With these measured noise data as input, the previously reported localization algorithm was applied in its original form. The algorithm singled out one control rod out of the possible seven, and independent investigations performed before and during the subsequent refueling showed the correctness of the localization results. It is therefore concluded that, at least in this particular application, the approximations used in the model were allowable in a case of practical interest. The algorithm was developed further to facilitate the automatization and reliability of the localization procedure. These developments and the experiences in the application of the algorithm are reported in this paper.