ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Yasuki Kowata, Nobuo Fukumura
Nuclear Science and Engineering | Volume 99 | Number 4 | August 1988 | Pages 299-312
Technical Paper | doi.org/10.13182/NSE88-A23560
Articles are hosted by Taylor and Francis Online.
Using the substitution method combined with the pulsed neutron technique, coolant void reactivities of PuO2-UO2 fuel lattices in pressure-tube-type heavy water reactors have been determined as functions of PuO2 enrichment in PuO2-UO2 (0.54 and 0.87 wt%), fissile content of plutonium (91 and 75% fissile plutonium), lattice pitch (Vm/Vf: 7.4 and 9.9), and coolant void fraction (0, 30, 70, 87, and 100%). The reference loading of 1.2 wt% enriched UO2 clusters was progressively replaced by PuO2-UO2 test clusters. The void reactivities were obtained from Simmons and King’s formula in which correction was made for a change of the prompt generation time. As decay constants can be maintained invariable due to substitution, buckling differences were analyzed by the first-order perturbation method, on the assumption that lattices are homogeneous and no difference in diffusion coefficients exists between the two lattices. Void reactivities of test lattices were determined with an accuracy of ∼10% when the minimum number of test fuel clusters was ∼5% of the total. The void reactivity shifted farther to the negative side as the proportion of fissile plutonium was increasingly in the PuO2-UO2 fuel of the same enrichment of plutonium.