ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Yonghee Kim, Won Seok Park, Chang Kue Park
Nuclear Science and Engineering | Volume 144 | Number 3 | July 2003 | Pages 227-241
Technical Paper | doi.org/10.13182/NSE03-A2356
Articles are hosted by Taylor and Francis Online.
An importance function of the external spallation neutrons in an accelerator-driven system (ADS) has been introduced and characterized to address the source multiplication in a subcritical blanket. For a model ADS problem with a central external source, the source importance function is evaluated with a neutron transport code system. For a homogeneous core, essential characteristics of the importance are identified from the viewpoint of spatial distributions and energy dependency, etc. The importance function is evaluated for two different beam tube diameters, and its dependency on the buffer thickness is also addressed. In order to assess the impact of the power distribution on the importance function, a heterogeneous core is considered, and its importance function is evaluated. The analyses show that the peak importance occurs in the inner fuel blanket zone, not in the central source region, and the neutron importance in a high-energy regime, above 7 to 20 MeV, is high and increases with the energy. Also, the effects of a neutron absorber on the source importance are studied, and it is found that the source importance could be drastically reduced by surrounding the source with a strong neutron absorber such as B4C. In addition, the source importance function is compared with the conventional -mode adjoint flux, which is used as an importance function of fission neutrons in critical reactors. The comparison reveals that the inhomogeneous source importance function could be quite similar to the homogeneous -mode adjoint flux in both spatial and spectral distributions for a wide range of subcriticality.