ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yonghee Kim, Won Seok Park, Chang Kue Park
Nuclear Science and Engineering | Volume 144 | Number 3 | July 2003 | Pages 227-241
Technical Paper | doi.org/10.13182/NSE03-A2356
Articles are hosted by Taylor and Francis Online.
An importance function of the external spallation neutrons in an accelerator-driven system (ADS) has been introduced and characterized to address the source multiplication in a subcritical blanket. For a model ADS problem with a central external source, the source importance function is evaluated with a neutron transport code system. For a homogeneous core, essential characteristics of the importance are identified from the viewpoint of spatial distributions and energy dependency, etc. The importance function is evaluated for two different beam tube diameters, and its dependency on the buffer thickness is also addressed. In order to assess the impact of the power distribution on the importance function, a heterogeneous core is considered, and its importance function is evaluated. The analyses show that the peak importance occurs in the inner fuel blanket zone, not in the central source region, and the neutron importance in a high-energy regime, above 7 to 20 MeV, is high and increases with the energy. Also, the effects of a neutron absorber on the source importance are studied, and it is found that the source importance could be drastically reduced by surrounding the source with a strong neutron absorber such as B4C. In addition, the source importance function is compared with the conventional -mode adjoint flux, which is used as an importance function of fission neutrons in critical reactors. The comparison reveals that the inhomogeneous source importance function could be quite similar to the homogeneous -mode adjoint flux in both spatial and spectral distributions for a wide range of subcriticality.