ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TVA nominees promise to support advanced reactor development
Four nominees to serve on the Tennessee Valley Authority Board of Directors told the Senate Environment and Public Works Committee that they support the build-out of new advanced nuclear reactors to meet the increased energy demand being shouldered by the country’s largest public utility.
H. Hirayama, D. K. Trubey
Nuclear Science and Engineering | Volume 99 | Number 2 | June 1988 | Pages 145-156
Technical Paper | doi.org/10.13182/NSE88-A23555
Articles are hosted by Taylor and Francis Online.
The effects of including incoherent and coherent scattering in a calculation of the exposure buildup factors for plane normal gamma-ray sources have been investigated by using an electron-gamma-ray shower Monte Carlo code, EGS4, for water, iron, and lead in the 40- to 200-keV range. The “true” buildup factors and “pseudo” buildup factors for practical uses are defined to clarify the effects of bound-electron Compton (incoherent) and coherent scattering and are tabulated for penetration depths up to 10 mfp. The pseudo buildup factor increases by including incoherent scattering and decreases by including coherent scattering. The degree of each effect varies with the atomic number of the material. The effect of incoherent scattering is large for materials of small atomic number, and the effect of coherent scattering is large for materials of large atomic number.