ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
S. Fan, J. Rong, H. Zhang, Z. Zhao
Nuclear Science and Engineering | Volume 144 | Number 3 | July 2003 | Pages 219-226
Technical Paper | doi.org/10.13182/NSE03-A2355
Articles are hosted by Taylor and Francis Online.
The formation cross section of the nuclide production of proton-induced reactions with intermediate energy is important for a variety of applications. For instance, the mass and charge distribution of residual products produced in the spallation reactions needs to be studied because it can provide useful information for the disposal of nuclear waste and residual radioactivity generated by the spallation neutron target system. With our current work, we have developed the Many Stage Dynamical Model (MSDM) based on the Cascade-Exciton Model (CEM). By introducing Mshnik's recent work on the CEM code, the MSDM code and the Quantum Molecular Dynamics (QMD) plus Statistical Decay Model (SDM) (QMD+SDM) and QMD plus FISSION (QMD+FISSION) models are adopted; we use them to investigate the mass distribution of Nb, Au, and Pb of proton-induced reactions with energies from 100 MeV to 3 GeV. The agreement between the developed MSDM simulations and the measured data as well as the QMD+FISSION model are good in the energy range of 100 MeV to 3 GeV, and deviations mainly show up in the mass range of 90 to 140 in the high energy of protons incident on the Au and Pb target for the MSDM and QMD+FISSION model simulations. The QMD+SDM can reproduce only part of the spallation fragments and cannot reproduce the fission fragments of the measured data.