ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
S. Fan, J. Rong, H. Zhang, Z. Zhao
Nuclear Science and Engineering | Volume 144 | Number 3 | July 2003 | Pages 219-226
Technical Paper | doi.org/10.13182/NSE03-A2355
Articles are hosted by Taylor and Francis Online.
The formation cross section of the nuclide production of proton-induced reactions with intermediate energy is important for a variety of applications. For instance, the mass and charge distribution of residual products produced in the spallation reactions needs to be studied because it can provide useful information for the disposal of nuclear waste and residual radioactivity generated by the spallation neutron target system. With our current work, we have developed the Many Stage Dynamical Model (MSDM) based on the Cascade-Exciton Model (CEM). By introducing Mshnik's recent work on the CEM code, the MSDM code and the Quantum Molecular Dynamics (QMD) plus Statistical Decay Model (SDM) (QMD+SDM) and QMD plus FISSION (QMD+FISSION) models are adopted; we use them to investigate the mass distribution of Nb, Au, and Pb of proton-induced reactions with energies from 100 MeV to 3 GeV. The agreement between the developed MSDM simulations and the measured data as well as the QMD+FISSION model are good in the energy range of 100 MeV to 3 GeV, and deviations mainly show up in the mass range of 90 to 140 in the high energy of protons incident on the Au and Pb target for the MSDM and QMD+FISSION model simulations. The QMD+SDM can reproduce only part of the spallation fragments and cannot reproduce the fission fragments of the measured data.