ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
General Atomics tests fuel as space nuclear propulsion R&D powers on
General Atomics Electromagnetic Systems (GA-EMS) has announced that it has subjected nuclear thermal propulsion (NTP) fuel samples to several “high-impact” tests at NASA’s Marshall Space Flight Center (MSFC) in Huntsville, Ala. That news comes as NASA, the Department of Defense, the Department of Energy, and multiple nuclear and space technology companies continue to build on recent progress in nuclear thermal rocket design and demonstration.
S. Fan, J. Rong, H. Zhang, Z. Zhao
Nuclear Science and Engineering | Volume 144 | Number 3 | July 2003 | Pages 219-226
Technical Paper | doi.org/10.13182/NSE03-A2355
Articles are hosted by Taylor and Francis Online.
The formation cross section of the nuclide production of proton-induced reactions with intermediate energy is important for a variety of applications. For instance, the mass and charge distribution of residual products produced in the spallation reactions needs to be studied because it can provide useful information for the disposal of nuclear waste and residual radioactivity generated by the spallation neutron target system. With our current work, we have developed the Many Stage Dynamical Model (MSDM) based on the Cascade-Exciton Model (CEM). By introducing Mshnik's recent work on the CEM code, the MSDM code and the Quantum Molecular Dynamics (QMD) plus Statistical Decay Model (SDM) (QMD+SDM) and QMD plus FISSION (QMD+FISSION) models are adopted; we use them to investigate the mass distribution of Nb, Au, and Pb of proton-induced reactions with energies from 100 MeV to 3 GeV. The agreement between the developed MSDM simulations and the measured data as well as the QMD+FISSION model are good in the energy range of 100 MeV to 3 GeV, and deviations mainly show up in the mass range of 90 to 140 in the high energy of protons incident on the Au and Pb target for the MSDM and QMD+FISSION model simulations. The QMD+SDM can reproduce only part of the spallation fragments and cannot reproduce the fission fragments of the measured data.