ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
H.F. Lucas, F. Markun
Nuclear Science and Engineering | Volume 99 | Number 1 | May 1988 | Pages 82-87
Technical Note | doi.org/10.13182/NSE88-A23546
Articles are hosted by Taylor and Francis Online.
A procedure has been developed for preparing 3- to 9-ℓ volumes of air under natural conditions with a known concentration of 222Rn to be used for calibrating radon systems. Air is passed into a plastic bag through a standard 226Ra solution (prepared by the U.S. National Bureau of Standards) contained in an emanation flask. This plastic bag retains 222Rn with little loss into or through the bag walls. The mean ratios of the 222Rn in the air at 2 and 7 days after filling to that immediately after filling were 0.992 ± 0.006 and 0.969 ± 0.008, which suggests a rate of radon loss into the bag of 0.4 ± 0.1%/day. The air from the bag was used to calibrate six Lucas chambers. Each chamber was calibrated 11 times with an average fractional standard error of the mean of 0.5%. This value is greater than the 0.2% expected from counting errors alone and suggests that the entire calibration procedure plus the counting system introduces a systematic standard deviation of 1.4% for each individual calibration and counting procedure. The bag and calibrated counters can also be used to determine the 226Ra and the 222Rn content of water. In addition, by replacing the air with other flush gases, calibration factors for gas mixtures other than air can be determined. The accuracy of these calibrations was verified by comparison with four methods, three of which are completely independent. The results by all four methods agree within ±1%.