ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
N. Toomarian, E. Wacholder, S. Kaizerman
Nuclear Science and Engineering | Volume 99 | Number 1 | May 1988 | Pages 53-81
Technical Paper | doi.org/10.13182/NSE88-A23545
Articles are hosted by Taylor and Francis Online.
The mathematical derivation and application of two deterministic sensitivity analysis methods, the direct approach of sensitivity (DAS) and the adjoint sensitivity method (ASM), are presented for two-phase flow problems. The physical problems investigated are formulated by the transient onedimensional two-phase flow diffusion model, which consists of a system of four coupled quasi-linear first-order partial differential equations. The DAS method provides the sensitivity coefficients of all primary dependent variables at each time and space location with respect to a single input parameter. On the other hand, the ASM provides the sensitivity coefficients of a single response function at a specified time and space location with respect to all input parameters. The systems of governing equations of both sensitivity methods developed possess the same characteristic directions as those of the original physical model. Therefore, the same numerical methods for the solution of these equations have been selected as for the solution of the physical problem, i.e., Turner scheme and modified Turner (NAIAD) scheme. Special techniques to incorporate the boundary conditions of the ASM governing equations for each numerical scheme have been developed. The sensitivity coefficients computed by both methods have been verified against results from standard parametric studies. Two sample problems are thoroughly investigated. The first problem considers the transient fluid behavior in a uniformly heated channel subjected to an inlet flow decay. The second problem considers the transient fluid response within the same channel when a pressure step change at the channel inlet is imposed. Both methods predict satisfactorily the sensitivity coefficient behavior in space and time in comparison with parametric studies, even when a moving boiling boundary exists within the flow field. Certain coefficients in the thermodynamic correlations of the liquid density and the liquid saturation enthalpy, as well as the boundary conditions of the problems, were found to be the most “sensitive” input parameters in both problems investigated. Some input parameters of minor significance in the steady-state conditions were found to be very “influential” during the transient and vice versa. The behavior of most of the sensitivity coefficients, in space and time, cannot be estimated without a systematic sensitivity analysis method.