ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
N. Toomarian, E. Wacholder, S. Kaizerman
Nuclear Science and Engineering | Volume 99 | Number 1 | May 1988 | Pages 53-81
Technical Paper | doi.org/10.13182/NSE88-A23545
Articles are hosted by Taylor and Francis Online.
The mathematical derivation and application of two deterministic sensitivity analysis methods, the direct approach of sensitivity (DAS) and the adjoint sensitivity method (ASM), are presented for two-phase flow problems. The physical problems investigated are formulated by the transient onedimensional two-phase flow diffusion model, which consists of a system of four coupled quasi-linear first-order partial differential equations. The DAS method provides the sensitivity coefficients of all primary dependent variables at each time and space location with respect to a single input parameter. On the other hand, the ASM provides the sensitivity coefficients of a single response function at a specified time and space location with respect to all input parameters. The systems of governing equations of both sensitivity methods developed possess the same characteristic directions as those of the original physical model. Therefore, the same numerical methods for the solution of these equations have been selected as for the solution of the physical problem, i.e., Turner scheme and modified Turner (NAIAD) scheme. Special techniques to incorporate the boundary conditions of the ASM governing equations for each numerical scheme have been developed. The sensitivity coefficients computed by both methods have been verified against results from standard parametric studies. Two sample problems are thoroughly investigated. The first problem considers the transient fluid behavior in a uniformly heated channel subjected to an inlet flow decay. The second problem considers the transient fluid response within the same channel when a pressure step change at the channel inlet is imposed. Both methods predict satisfactorily the sensitivity coefficient behavior in space and time in comparison with parametric studies, even when a moving boiling boundary exists within the flow field. Certain coefficients in the thermodynamic correlations of the liquid density and the liquid saturation enthalpy, as well as the boundary conditions of the problems, were found to be the most “sensitive” input parameters in both problems investigated. Some input parameters of minor significance in the steady-state conditions were found to be very “influential” during the transient and vice versa. The behavior of most of the sensitivity coefficients, in space and time, cannot be estimated without a systematic sensitivity analysis method.