ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
J. S. Gilmore, G. J. Russell, H. Robinson, R. E. Prael
Nuclear Science and Engineering | Volume 99 | Number 1 | May 1988 | Pages 41-52
Technical Paper | doi.org/10.13182/NSE88-A23544
Articles are hosted by Taylor and Francis Online.
Axial distributions of fissions and of fertile-to-fissile conversions in thick depleted uranium and thorium targets bombarded by 800-MeV protons have been measured. The amounts of 239Pu and 233 U produced were determined by measuring the yields of 239Np and 233Pa, respectively. The number of fissions was deduced from fission product mass-yield curves. Integration of the axial distributions gave the total number of conversions and fissions occurring in the targets. For the uranium target, experimental results were 5.90 ± 0.25 fissions and 3.81 ± 0.01 atoms of239Pu produced per incident proton. Corresponding calculated results were 6.14 ± 0.04 and 3.88 ± 0.03. In the thorium target, 1.56 ± 0.25 fissions and 1.25 ± 0.01 atoms of 233U per incident proton were measured; the calculated values were 1.54 ±0 0.01 fissions and 1.27 ± 0.01 atom/proton.