ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Y. Y. Azmy
Nuclear Science and Engineering | Volume 98 | Number 1 | January 1988 | Pages 29-40
Technical Paper | doi.org/10.13182/NSE88-6
Articles are hosted by Taylor and Francis Online.
Very high computational efficiencies have been achieved recently by introducing higher order approximations to nodal formalisms for the discrete ordinates, neutron transport equation. However, the difficulty of the nodal formalism, its final discrete variable equations, and the solution algorithms have limited the usefulness and applicability of nodal methods in spite of their extremely high accuracy. A general order, general dimensionality nodal transport method cast in a simple, compact, singleweight, weighted diamond-difference form is derived. The new form is a consistently formulated nodal method, which can be solved using either the discrete nodal-transport method or the nodal-equivalent finite difference algorithms without any approximations. The final discrete variable equations for the two-dimensional case are implemented in a computer code to solve monoenergetic, isotropic scattering, external source problems to any given order, i.e., C-C, L-L, Q-Q, etc. A simple test problem with large homogeneous regions is solved using this code, on meshes ranging from 2 × 2 to 128 × 128, and orders ranging from zero to nine. The results show that, for this problem, the CPU time and the storage size required to achieve a given accuracy decrease monotonically up to order five. Hence, very high order methods may be more computationally efficient in solving practical problems with large homogeneous regions.