ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Masayoshi Sugimoto, Alan B. Smith, Peter T. Guenther
Nuclear Science and Engineering | Volume 97 | Number 3 | November 1987 | Pages 235-238
Technical Note | doi.org/10.13182/NSE87-A23505
Articles are hosted by Taylor and Francis Online.
The prompt fission neutron spectrum resulting from 239Pu fission induced by ∼0.55-MeV incident neutrons is measured from 1.0 to 10.0 MeV relative to that of 235U fission induced by the same incident energy neutrons. The measurements employ the time-of-flight technique. Energy-dependent ratios of the two spectra are deduced from the measured values. The experimentally derived ratio results are compared with those calculated from ENDF/B-V (revision 2) and with results of recent microscopic measurements. Using the ENDF/B-V 235U Watt parameters for the 235U spectrum, the experimental measurements imply a ratio of average fission spectrum energies of 239Pu/235U = 1.045 ± 0.003, compared to the value 1.046 calculated from ENDF/B-V (revision 2).