ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Yukio Oyama, Hiroshi Maekawa
Nuclear Science and Engineering | Volume 97 | Number 3 | November 1987 | Pages 220-234
Technical Paper | doi.org/10.13182/NSE87-A23504
Articles are hosted by Taylor and Francis Online.
Angular neutron fluxes leaking from the surface of beryllium slab assemblies have been measured with irradiation of deuterium-tritium neutrons. The experiment was performed using the time-of-flight technique with an NE-213 scintillation detector. The measured neutron energy range was from 50 keV to 15 MeV. The thicknesses of the slabs were 50.8 and 152.4 mm, and the measured angles of the angular fluxes were 0.0, 12.2, 24.9, 41.8, and 66.8 deg. The experimental results have been compared with the results calculated by the Monte Carlo codes, MORSE-DD and MCNP, using the data of beryllium in the JENDL-3PR1, ENDF/B-IV, and Los Alamos National Laboratory nuclear data files. The results calculated with these files showed discrepancies of 20 to 30% from the experimental results. It was pointed out that the angular distributions of an elastic cross section and the total cross section of an inelastic reaction for 14.8-MeV neutrons in the files were insufficient to reproduce the measured spectra.