ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Mary E. Ward, John C. Lee
Nuclear Science and Engineering | Volume 97 | Number 3 | November 1987 | Pages 190-202
Technical Paper | doi.org/10.13182/NSE87-A23501
Articles are hosted by Taylor and Francis Online.
An investigation of the potential behavior of large amplitude nuclear-coupled density-wave oscillations in a boiling water reactor (BWR) was performed. A simplified, nonlinear BWR core model was developed and used to predict the growth of oscillations as a limit cycle is approached. For high-power/low-flow initial conditions, large density-wave oscillations could cause periodic pulses in core power. The fuel temperature, which rapidly increases at high-power conditions and slowly recovers, is considered as the fast variable in a relaxation oscillation. With an appropriate transformation of the system equations, the approximate limit cycle trajectory can therefore be determined using singular perturbation analysis. In the first approximation, where the relaxation is assumed to occur infinitely fast, the phase-space trajectory combines the slow part with an instantaneous jump between end points to form a closed cycle. The accuracy of this approximation is improved with appropriate perturbation series expansions on both the slow and fast parts, as well as introduction of a separate expansion for the connections between these parts. The approximate solution is considerably simpler to obtain than a conventional numerical solution of the original equations.