ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
From renaissance to reality: Infrastructure for a global nuclear fuel cycle
Dale Klein
This article was adapted from the author’s speech during a plenary at the 21st International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2025), San Antonio, Texas, July 2025.
There has been a lot of discussion lately about reforming the Nuclear Regulatory Commission. But I want to be clear: When it comes to nuclear safety and security, there is no place for partisan politics. I support efforts to streamline regulatory processes, but the independence and integrity of the NRC must remain sacrosanct. If we are serious about expanding nuclear power and reclaiming our global leadership in nuclear technology, having a strong independent regulator is fundamental.
Right now, we’re on the edge of a global nuclear resurgence driven by rising demand from data centers, growing concerns about energy security, and the need to decarbonize industry.
Mary E. Ward, John C. Lee
Nuclear Science and Engineering | Volume 97 | Number 3 | November 1987 | Pages 190-202
Technical Paper | doi.org/10.13182/NSE87-A23501
Articles are hosted by Taylor and Francis Online.
An investigation of the potential behavior of large amplitude nuclear-coupled density-wave oscillations in a boiling water reactor (BWR) was performed. A simplified, nonlinear BWR core model was developed and used to predict the growth of oscillations as a limit cycle is approached. For high-power/low-flow initial conditions, large density-wave oscillations could cause periodic pulses in core power. The fuel temperature, which rapidly increases at high-power conditions and slowly recovers, is considered as the fast variable in a relaxation oscillation. With an appropriate transformation of the system equations, the approximate limit cycle trajectory can therefore be determined using singular perturbation analysis. In the first approximation, where the relaxation is assumed to occur infinitely fast, the phase-space trajectory combines the slow part with an instantaneous jump between end points to form a closed cycle. The accuracy of this approximation is improved with appropriate perturbation series expansions on both the slow and fast parts, as well as introduction of a separate expansion for the connections between these parts. The approximate solution is considerably simpler to obtain than a conventional numerical solution of the original equations.