A new conceptual design of a fusion reactor blanket simulation facility has been developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBF), where experiments have resulted in the discovery of substantial deficiencies in neutronics predictions. With this design, discrepancies between calculation and experimental data can be nearly fully attributed to calculation methods because design deficiencies that could affect results are insignificant. The conceptual design of this FBBF analog, the Fusion Reactor Blanket Facility, is presented. Essential features are the cylindrical geometry and a distributed line source of 14-MeV neutrons with a cosine-shaped intensity distribution. The source design consists of a deuteron beam sweeping over an elongated titanium-tritide target. To predict the character of the neutron flux this source will produce, neutronics analyses were performed. Predictions for two- and one-dimensional calculations are compared for two blanket compositions. Expected deviations from one-dimensional predictions, which are due to source anisotropy and blanket asymmetry, are shown to be minimal. Therefore, one-dimensional calculations can be performed in fine detail as a basis for the generation of accurate coarse group constants for two-dimensional predictions. The proposed design of this fusion blanket facility should allow straightforward interpretation of experimental results in terms of computational and data deficiencies.