ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
P. Pohl , M. Wimmers, T. Kindt, W. Feltes, U. Schmid, H. Jung
Nuclear Science and Engineering | Volume 97 | Number 1 | September 1987 | Pages 64-71
Technical Paper | doi.org/10.13182/NSE87-A23497
Articles are hosted by Taylor and Francis Online.
The measurements that were made in recent years to determine the hot and the cold coefficient of reactivity and the corresponding model calculations carried out by both Interatom and Hochtemperaturreaktorbau are described. The effects of the partial load of low-enriched uranium (LEU) fuel were of major interest. The cold coefficient is determined in shutdown periods by measuring the subcriticality at different core temperatures. The hot coefficient is determined under operation in connection with a change in coolant outlet temperature at constant power using a calibrated rod curve. In the case of the cold coefficient, experiment and model calculations are in perfect agreement. Calculated values for the hot coefficient are ∼20% lower than the experimental ones. However, neither experiment nor model calculation show any significant change of the hot coefficient when about one-fourth of the core content was being replaced by LEU fuel.