ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
M. Wimmers, P. Pohl
Nuclear Science and Engineering | Volume 97 | Number 1 | September 1987 | Pages 53-57
Technical Paper | doi.org/10.13182/NSE87-A23495
Articles are hosted by Taylor and Francis Online.
In collaboration with Kernforschungsanlage Jülich, Federal Republic of Germany, and other companies, dynamic experiments have been carried out with the Arbeitsgemeinschaft Versuchsreaktor (A VR) to test advanced dynamic computer models with the goal of using low-enriched uranium (LEU) fuel in future high-temperature gas-cooled reactors. Since LEU fuel has been used for the AVR since 1982, both experimental and theoretical behavior has been studied during the changeover from highly enriched uranium to LEU. The experiments comprise fast power transients that are initiated by either a fast control rod movement or a fast change of coolant flow. The neutron flux and other important parameters are registered in suitable time expansion. To prevent the cantilevered segments of the carbon brick core ceiling from being exposed to unallowable high-temperature gradients, the rod movements are restricted to limit the reactivity variation to ∼ 60 mNile. For the coolant flow transients, the blower speed is usually reduced from 100 to 50%, and then elevated again to 80% after 30 min. A return to 100% is not possible because of the overshoot of the neutron flux. Also, in some experiments the speed is reduced to 80%, after which the core remains under the control of xenon influence for ≈1 day.