ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
V. Drüke, D. Filges, R. D. Neef, N. Paul, H. Schaal
Nuclear Science and Engineering | Volume 97 | Number 1 | September 1987 | Pages 37-52
Technical Paper | doi.org/10.13182/NSE87-A23494
Articles are hosted by Taylor and Francis Online.
Several fuel-loading concepts are proposed for high-temperature reactors of the pebble-bed type. A very promising one is the so-called OTTO (once through then out) loading scheme. Some of the intrinsic features of OTTO fuel loading are the axial nonsymmetrical power and neutron flux distribution with a pronounced maximum at the upper reactor core region. Since the neutron physics of OTTO cores will be very different from previous homogeneous fuel-loading schemes, detailed experimental and theoretical investigations of these objectives were performed at the critical facility KAHTER. Experimental and theoretical investigations have been carried out to determine critical masses, reaction rates, and control rod worths in the upper cavity and top reflector. Fast flux distributions in upper graphite reflectors were also measured to estimate graphite damage. The critical masses and keff’s are calculated using two- and three-dimensional code systems. The three-dimensional codes give keff values for the high-temperature gas-cooled reactor OTTO cores at zero burnup within a margin that is currently standard for these calculations. The agreement of measured and calculated reactivity worths of the top reflector rods is better than 2%.