ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
General Atomics tests fuel as space nuclear propulsion R&D powers on
General Atomics Electromagnetic Systems (GA-EMS) has announced that it has subjected nuclear thermal propulsion (NTP) fuel samples to several “high-impact” tests at NASA’s Marshall Space Flight Center (MSFC) in Huntsville, Ala. That news comes as NASA, the Department of Defense, the Department of Energy, and multiple nuclear and space technology companies continue to build on recent progress in nuclear thermal rocket design and demonstration.
L. Perrot, A. Billebaud, R. Brissot, A. Giorni, D. Heuer, J.-M. Loiseaux, O. Méplan, J.-B. Viano
Nuclear Science and Engineering | Volume 144 | Number 2 | June 2003 | Pages 142-156
Technical Paper | doi.org/10.13182/NSE03-A2349
Articles are hosted by Taylor and Francis Online.
Projects dealing with future reactors based on new fuels and able to incinerate nuclear waste require good knowledge of numerous cross sections. In order to resolve nuclear database discrepancies, capture cross-section profiles between 0.1 eV and 30 keV have been measured for different materials using a lead-slowing-down-time spectrometer in association with a pulsed neutron generator. The measurement of the neutron flux with a 233U fission detector and a 3He counter, and careful analysis of the E-t correlation compared to very precise Monte Carlo simulations, brought new information on the lead scattering cross section. Capture profiles for reference materials (gold, tantalum, indium, and silver), core materials (thorium and technetium), and structure materials (manganese and nickel) were measured with a CeF3 scintillator and photomultiplier for different thicknesses. Areas of agreement and disagreement between experimental results and simulations using different databases have been determined with a precision of 5%. Correction tables are given for some elements. This method opens an efficient way for revisiting (n, ) databases, and it allows rapid error evaluation and sensitivity studies.