ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
L. Perrot, A. Billebaud, R. Brissot, A. Giorni, D. Heuer, J.-M. Loiseaux, O. Méplan, J.-B. Viano
Nuclear Science and Engineering | Volume 144 | Number 2 | June 2003 | Pages 142-156
Technical Paper | doi.org/10.13182/NSE03-A2349
Articles are hosted by Taylor and Francis Online.
Projects dealing with future reactors based on new fuels and able to incinerate nuclear waste require good knowledge of numerous cross sections. In order to resolve nuclear database discrepancies, capture cross-section profiles between 0.1 eV and 30 keV have been measured for different materials using a lead-slowing-down-time spectrometer in association with a pulsed neutron generator. The measurement of the neutron flux with a 233U fission detector and a 3He counter, and careful analysis of the E-t correlation compared to very precise Monte Carlo simulations, brought new information on the lead scattering cross section. Capture profiles for reference materials (gold, tantalum, indium, and silver), core materials (thorium and technetium), and structure materials (manganese and nickel) were measured with a CeF3 scintillator and photomultiplier for different thicknesses. Areas of agreement and disagreement between experimental results and simulations using different databases have been determined with a precision of 5%. Correction tables are given for some elements. This method opens an efficient way for revisiting (n, ) databases, and it allows rapid error evaluation and sensitivity studies.