ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Robert W. Conn
Nuclear Science and Engineering | Volume 55 | Number 4 | December 1974 | Pages 468-470
Technical Note | doi.org/10.13182/NSE74-A23480
Articles are hosted by Taylor and Francis Online.
The relationship between higher order variational principles for linear functionals of the solution to an inhomogeneous equation and Padé approximants for the same functional is shown. This leads to a deeper understanding of these higher order principles. Further, it is noted that in certain cases, the Roussopoulos functional can yield divergent results while using the Ritz procedure, shown to be equivalent to forming Padé approximants for the functional of interest, gives a generalized Schwinger normalization independent variational principle that can yield finite and convergent results.