ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Dermott E. Cullen
Nuclear Science and Engineering | Volume 55 | Number 4 | December 1974 | Pages 387-400
Technical Paper | doi.org/10.13182/NSE74-3
Articles are hosted by Taylor and Francis Online.
The probability table method, developed for Monte Carlo calculations in the region of unresolved neutron resonances, is demonstrated to be of general use in neutron transport studies since the Boltzmann equation involved can be derived and solved by analogy to multigroup methods. Since the resulting equations can be cast into a form identical to that of the multigroup equations, they can be solved by existing multigroup transport codes. From a set of probability tables and spatially independent, unshielded, neutron cross sections, the method yields correct selfshielding effects, such as equivalent, spatially dependent, multigroup cross sections. Extension of the method and the use of probability tables outside the unresolved region are discussed.