ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
O. D. Simpson, F. B. Simpson, J. A. Harvey, G. G. Slaughter, R. W. Benjamin, C. E. Ahlfeld
Nuclear Science and Engineering | Volume 55 | Number 3 | November 1974 | Pages 273-279
Technical Paper | doi.org/10.13182/NSE74-A23454
Articles are hosted by Taylor and Francis Online.
Neutron transmission measurements have been made on two high-purity samples of 243Am having inverse thicknesses of 1288.2 and 279.3 b/atom, respectively. Data were collected from 0.5 to 1000 eV using the Oak Ridge Electron Linear Accelerator. High resolution data were taken using 10- and 30-nsec bursts of 140-MeV electrons, 10-nsec channel widths, and a flight path of 18.576 m. An average value of Ty of 39 ± 1 meV was determined from shape analysis of 24 resonances below 18 eV. Single-level Breit-Wigner resonance parameters were obtained from area analysis up to 250 eV. The average level spacing between resonances was found to be 0.68 ± 0.06 eV. An s-wave neutron strength function of (0.96 ± 0.10) × 10≈4 was determined from the resonance parameters, The resonance-absorption integral for neutrons with energies above 0.625 eV was determined to be 1810 ± 70 b from the resonance parameters.