ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
M. A. Abdou, Robert W. Conn
Nuclear Science and Engineering | Volume 55 | Number 3 | November 1974 | Pages 256-266
Technical Paper | doi.org/10.13182/NSE74-A23452
Articles are hosted by Taylor and Francis Online.
A study of the nuclear performance of several recently reported fusion reactor blanket designs is presented. In particular, the nuclear heating, the tritium breeding ratio, and the charged-particle production rates in the various systems are reported. It is found that the total nuclear heating can be overestimated by as much as 30%, that ∼20 MeV per fusion is a typical value for the energy production capability of most blankets, and that 22.4 MeV per fusion is a more maximum than nominal value for blankets without fissile materials. The tritium breeding ratio in lithium blankets is high, and uncertainties in nuclear data are unlikely to prevent such systems from breeding. Flibe blankets are marginal in this regard, and uncertainties can prevent breeding in these systems. Hydrogen and helium production rates are fairly large in all systems; they are highest in sintered aluminum product and in the PE-16 alloy, and lowest in niobium, with stainless steel in between. However, much of the required nuclear data on charged-particle-producing reactions is unavailable, and the need for cross-section measurements in this area is discussed.