ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
H. D. Warren, N. H. Shah
Nuclear Science and Engineering | Volume 54 | Number 4 | August 1974 | Pages 395-415
Technical Paper | doi.org/10.13182/NSE74-A23434
Articles are hosted by Taylor and Francis Online.
A general calculational model describing the effects of neutrons and gamma rays on self-powered prompt-responding coaxial in-core radiation detectors is presented. The model accounts for external gamma-ray interactions within a detector and the subsequent emissions of Compton electrons and photoelectrons. The model also includes neutron-capture gamma-ray and internal-conversion electron emissions. The effect on a detector’s sensitivity of space charge within its insulator is considered. A pseudopotential on the central electrode is introduced to account for Z-dependent variations in the space-charge distribution. Calculated neutron and gamma sensitivities of several in-core detectors are compared with experimental sensitivities. The comparisons are sufficiently satisfactory to label the model as successful in its predictions.