ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Tomas Lefvert
Nuclear Science and Engineering | Volume 54 | Number 4 | August 1974 | Pages 369-375
Technical Paper | doi.org/10.13182/NSE74-A23431
Articles are hosted by Taylor and Francis Online.
The eigenvalue problem of the integral neutron transport equation is studied using generalized first-flight collision probabilities. An exact transformation law for these collision probabilities describes how they change when the total cross section of the medium varies. Applying this transformation law on eigenvalue problems of the integral transport equation leads to several useful results. Thus, an explicit eigenvalue equation for the decay constant is derived, and transformed eigenvalue problems for both the multiplication factor, k, and the decay constant, α, are given in terms of the transport properties of a reference configuration, and of scaling parameters for uniform size and/or density changes. Exact scaling laws for k and α at constant mean-free-path transformations result as a special case. Finally, a general, higher order, nonlinear perturbation theory is given for both the multiplication factor and decay constant eigenvalue problems.