ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
P. Köhler, J. Ligou
Nuclear Science and Engineering | Volume 54 | Number 3 | July 1974 | Pages 357-360
Technical Note | doi.org/10.13182/NSE74-A23426
Articles are hosted by Taylor and Francis Online.
Calculations of neutron streaming in gas-cooled fast reactors (GCFR) designed with fuel pins have not been made properly up to now. The usual approach for computing the diffusion coefficients fails for two reasons: (a) the voided region is located at the cell boundary, and (b) the pitch is such that two-dimensional infinite gaps extend through the reactor. For an infinite lattice, the diffusion coefficient will diverge, which means that, in principle, the diffusion theory is no longer valid. This fact has been more or less forgotten because most theories assume cylindrical cells and therefore remove this difficulty artificially. Introducing the real size of the reactor at the beginning, a new theory of the streaming, which generalizes the usual approach is developed; it appears as a buckling dependent term in the diffusion coefficient which diverges slowly for an infinite lattice. Fortunately, this term is small for usual reactor sizes, and one may, therefore, continue to use diffusion theory for practical calculations. The numerical applications to GCFR lattices show that the streaming was underestimated in the past.