ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
P. Köhler, J. Ligou
Nuclear Science and Engineering | Volume 54 | Number 3 | July 1974 | Pages 357-360
Technical Note | doi.org/10.13182/NSE74-A23426
Articles are hosted by Taylor and Francis Online.
Calculations of neutron streaming in gas-cooled fast reactors (GCFR) designed with fuel pins have not been made properly up to now. The usual approach for computing the diffusion coefficients fails for two reasons: (a) the voided region is located at the cell boundary, and (b) the pitch is such that two-dimensional infinite gaps extend through the reactor. For an infinite lattice, the diffusion coefficient will diverge, which means that, in principle, the diffusion theory is no longer valid. This fact has been more or less forgotten because most theories assume cylindrical cells and therefore remove this difficulty artificially. Introducing the real size of the reactor at the beginning, a new theory of the streaming, which generalizes the usual approach is developed; it appears as a buckling dependent term in the diffusion coefficient which diverges slowly for an infinite lattice. Fortunately, this term is small for usual reactor sizes, and one may, therefore, continue to use diffusion theory for practical calculations. The numerical applications to GCFR lattices show that the streaming was underestimated in the past.