ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
Ely M. Gelbard
Nuclear Science and Engineering | Volume 54 | Number 3 | July 1974 | Pages 327-340
Technical Paper | doi.org/10.13182/NSE74-A23423
Articles are hosted by Taylor and Francis Online.
Diffusion coefficients are computed for a typical lattice cell of the zero-power plutonium reactor experiments using the methods of Benoist and Bonalumi. It is noted that the diffusion coefficients, Dx, for leakage normal to the plates, as defined by Benoist and by Bonalumi, are both double valued. The spread between Benoist’s x-diffusion coefficient is, in the lattice cell, over half as large as the difference between Dx and Dy. Bonalumi’s x-diffusion coefficients are much farther apart, the interval between them being considerably larger than the difference between Dx and Dy. Neither the Benoist nor the Bonalumi method yields homogenized diffusion coefficients that preserve fluxes, reaction rates, or eigenvalues. Using an approach similar to that of Deniz, the diffusion coefficient is redefined and constructed in such a way as to guarantee that eigenvalues will be preserved in the homogenization process. The relation between the new diffusion coefficients and the Benoist coefficients is discussed.