ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Ely M. Gelbard
Nuclear Science and Engineering | Volume 54 | Number 3 | July 1974 | Pages 327-340
Technical Paper | doi.org/10.13182/NSE74-A23423
Articles are hosted by Taylor and Francis Online.
Diffusion coefficients are computed for a typical lattice cell of the zero-power plutonium reactor experiments using the methods of Benoist and Bonalumi. It is noted that the diffusion coefficients, Dx, for leakage normal to the plates, as defined by Benoist and by Bonalumi, are both double valued. The spread between Benoist’s x-diffusion coefficient is, in the lattice cell, over half as large as the difference between Dx and Dy. Bonalumi’s x-diffusion coefficients are much farther apart, the interval between them being considerably larger than the difference between Dx and Dy. Neither the Benoist nor the Bonalumi method yields homogenized diffusion coefficients that preserve fluxes, reaction rates, or eigenvalues. Using an approach similar to that of Deniz, the diffusion coefficient is redefined and constructed in such a way as to guarantee that eigenvalues will be preserved in the homogenization process. The relation between the new diffusion coefficients and the Benoist coefficients is discussed.