ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
P. T. Guenther, P. A. Moldauer, A. B. Smith, J. F. Whalen
Nuclear Science and Engineering | Volume 54 | Number 3 | July 1974 | Pages 273-285
Technical Paper | doi.org/10.13182/NSE74-A23418
Articles are hosted by Taylor and Francis Online.
Elastic and inelastic neutron scattering cross sections of cobalt were measured from incident energies of 1.8 to 4.0 MeV including the excitation of states at 1.10 ± 0.01, 1.20 ± 0.01, 1.30 ± 0.01, 1.43 ± 0.01, 1.46 ± 0.02, 1.72 ± 0.02, 2.06 ± 0.02, 2.09 ± 0.02, 2.16 ± 0.03, 2.35 ± 0.05, and 2.50 ± 0.05 MeV. Total neutron cross sections were measured from 2.0 to 4.5 MeV. The experimental results and previously reported values are used to deduce an optical-statistical model which is descriptive of measured values to ∼20.0 MeV. The observed inelastic scattering cross sections are related to the level structure of the target isotope and are shown consistent with a nuclear structure model based upon a proton hole in the ƒ7/2 shell strongly coupled to a spherical core. A resolution to the previous ambiguities in fπ assignments is suggested. The experimental and calculational results are compared with the cross-section values given by ENDF/B-III.