ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
D. M. Johnson
Nuclear Science and Engineering | Volume 54 | Number 3 | July 1974 | Pages 235-253
Technical Paper | doi.org/10.13182/NSE74-A23415
Articles are hosted by Taylor and Francis Online.
In reactor design there is a requirement for a practical and economic method of predicting gamma-ray spectra throughout bulk shields. The commonly used build-up factor technique suffers the disadvantage of not predicting primary physical quantities, and the more sophisticated transport methods require considerable computer time and expertise to be effective. In the method developed here, an order of scattering model has been used with a spatial cell scheme and an energy multigroup system, but the usual limitation of computational complexity has been overcome by an angular approximation. An equilibrium property in the behavior of the angular penetration spectra has been incorporated in an anisotropic scatter approximation which tends, in the low energy limit, to become isotropic. The code has been tested over a range of penetrations and source energies, and the results are compared with the Monte Carlo method; similar results through an interface are given. Extension of the model to more complex geometries has been considered briefly.