ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS and the U.K.’s NI announce reciprocal membership agreement
With President Trump on a state visit to the U.K., in part to sign a landmark new agreement on U.S.-U.K. nuclear collaboration, a flurry of transatlantic partnerships and deals bridging the countries’ nuclear sectors have been announced.
The American Nuclear Society is taking an active role in this bridge-building by forming a reciprocal membership agreement with the U.K.’s Nuclear Institute.
John C. Lee
Nuclear Science and Engineering | Volume 54 | Number 2 | June 1974 | Pages 206-214
Technical Note | doi.org/10.13182/NSE74-A23410
Articles are hosted by Taylor and Francis Online.
Application of a θ-difference technique to the finite-difference solution of xenon-induced spatial transients has been made, which shows a substantial improvement in the accuracy of the calculated stability index and oscillation period. Virtually no correction is necessary for time-step lengths up to two hours, so an accurate simulation of experimental tests can be performed explicitly in the time domain with fairly crude time-step lengths. A simple expression was obtained for the optimum value of the parameter, θ, that can minimize the calculational error for a broad range of the core stability. The method is expected to be applicable for controlled xenon transients as well as for free-running oscillations.