ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. A. Smith, N. Tsoulfanidis, E. E. Lewis, G. Palmiotti, T. A. Taiwo
Nuclear Science and Engineering | Volume 144 | Number 1 | May 2003 | Pages 36-46
Technical Paper | doi.org/10.13182/NSE144-36
Articles are hosted by Taylor and Francis Online.
The variational nodal method is generalized by dividing each spatial node into a number of triangular finite elements designated as subelements. The finite subelement trial functions allow for explicit geometry representations within each node, thus eliminating the need for nodal homogenization. The method is implemented within the Argonne National Laboratory code VARIANT and applied to two-dimensional multigroup problems.Eigenvalue and pin-power results are presented for a four-assembly Organization for Economic Cooperation and Development/Nuclear Energy Agency benchmark problem containing enriched UO2 and mixed oxide fuel pins. Our seven-group model combines spherical or simplified spherical harmonic approximations in angle with isoparametric linear or quadratic subelement basis functions, thus eliminating the need for fuel-coolant homogenization. Comparisons with reference seven-group Monte Carlo solutions indicate that in the absence of pin-cell homogenization, high-order angular approximations are required to obtain accurate eigenvalues, while the results are substantially less sensitive to the refinement of the finite subelement grids.