ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
J. K. Dickens
Nuclear Science and Engineering | Volume 54 | Number 2 | June 1974 | Pages 191-196
Technical Note | doi.org/10.13182/NSE74-A23407
Articles are hosted by Taylor and Francis Online.
Interactions of neutrons with titanium have been studied by measuring gamma-ray-production cross sections. For a sample of natural titanium, spectra were obtained for incident-mean-neutron energies, En = 4.9, 5.4, and 5.9 MeV with gamma-ray detector systems utilizing coaxial Ge(Li) detectors. Nearly monoenergetic neutrons were obtained from the D(d,n) reaction using deuterons obtained from the (pulsed) Oak Ridge National Laboratory 5-MV Van de Graaff accelerator. Time of flight was used with the detector to discriminate against pulses due to neutrons and background radiation. Gamma-ray identification was aided by obtaining several spectra for samples enriched in the isotopes 46 Ti and 48Ti, and new information on the level structures of these two isotopes was obtained. Absolute differential cross sections for production of gamma rays were obtained and are reported. These cross sections have been compared, where possible, with previous (n,n’) measurements and with cross sections derived from the current ENDF/B evaluation.