ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS and the U.K.’s NI announce reciprocal membership agreement
With President Trump on a state visit to the U.K., in part to sign a landmark new agreement on U.S.-U.K. nuclear collaboration, a flurry of transatlantic partnerships and deals bridging the countries’ nuclear sectors have been announced.
The American Nuclear Society is taking an active role in this bridge-building by forming a reciprocal membership agreement with the U.K.’s Nuclear Institute.
A. A. El-Bassioni, C. G. Poncelet
Nuclear Science and Engineering | Volume 54 | Number 2 | June 1974 | Pages 166-176
Technical Paper | doi.org/10.13182/NSE74-A23404
Articles are hosted by Taylor and Francis Online.
The theoretical minimal time modal control strategy to suppress xenon oscillations in nuclear reactors was found to be of the Bang-Bang type. Such control policy implies instantaneous variation of the control poison between two extreme values. The switching action depends on exact knowledge of the location of the reactor state in the phase plane. The state is related to the measured axial offset, and the concept of axial offset phase plane is introduced. The main features of this phase plane can be constructed using a semi-operational method. Using the Carnegie-Mellon University xenon spatial control simulator, optimal and off-optimal control policies were tested and the capability to suppress the oscillation was demonstrated. Some of the attractive features of this suggested method are the simplicity of control policies, use of reactor output data, and the ability to initiate the control action once the oscillation is detected and to predict beforehand the outcome of the control decision, thus increasing the operator capacity to modify his decision.