ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Mohamed Sawan, Robert W. Conn
Nuclear Science and Engineering | Volume 54 | Number 2 | June 1974 | Pages 127-142
Technical Paper | doi.org/10.13182/NSE74-A23401
Articles are hosted by Taylor and Francis Online.
Methods for the analysis of neutron pulses slowing down in heavy media are presented. The Green’s function coupling method is reviewed and the application of a prompt-jump approximation to pulses slowing down in heavy media is discussed. In this paper, these methods are applied in particular to the analysis of the lead slowing down time spectrometer (LSDTS) and the application of this device to nondestructive fissile material assay (NDA). The effects of pulse width, spectrometer size, higher order spatial modes, and lead cross-section data on the calibration curve (t versus 1/√E, the dieaway curve N(t) versus t, and the time-dependent spectrum of the LSDTS are reported. For NDA, the assay of fresh light-water reactor (LWR), plutonium recycle, and fast reactor fuel pins, as well as spent LWR fuel pins, is studied. The effects of self shielding and pulse width on the discrimination capability of the LSDTS are assessed. Two energy ranges (27.6 to 43.6 eV and 10.3 to 16.3 eV) are proposed for the assay of mixed-oxide fuel where discrimination between 235U and 239Pu is required. An error analysis of NDA with lead spectrometers that includes the calibration surfaces which occur in the assay of mixed-oxide fuel pins is given.