ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Hugh K. Clark
Nuclear Science and Engineering | Volume 54 | Number 1 | May 1974 | Pages 55-71
Technical Paper | doi.org/10.13182/NSE74-A23393
Articles are hosted by Taylor and Francis Online.
The approximation inherent in using cell-averaged homogenized cross sections in computations for heterogeneous reactors is investigated for slab reactors by discrete integral transport (DIT) theory. Small, but significant, differences in reactivity and anisotropies in migration area are found. The DIT technique is extended to include an exact asymptotic reactor boundary condition and a separable transverse flux. Approximate solutions are investigated in which a reactor is subdivided into a number of zones with the coupling between zones expressed in terms of the directional currents at the interfaces. The sticking probabilities for these currents are derived from Taylor expansions of the source through linear terms. Generally good results are obtained when the zones correspond with the cells in a reactor.