ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
Hans K. Fauske
Nuclear Science and Engineering | Volume 54 | Number 1 | May 1974 | Pages 10-17
Technical Paper | doi.org/10.13182/NSE74-A23388
Articles are hosted by Taylor and Francis Online.
This paper discusses some aspects of pin-to-pin failure propagation in a sodium-cooled fast-reactor subassembly resulting from (a) fission-gas release, (b) a local blockage, and (c) release of small amounts of molten fuel. The consequence of a severe flow dilution due to fission-gas release from a highly burned-up fuel pin is shown to give rise to only minor overheating because of the strong effects of fuel heat capacity, radial heat conduction, and mixing. Analysis has also shown that the occurrence of local boiling due to local blockage of detectable size appears unlikely to lead to dryout and flow instability because of the large subcooling effect in the wake downstream of the blockage. Moreover, even if a pin in a fuel assembly is assumed to fail and release small amounts of molten fuel, calculations indicate that heat losses and condensation will prevent any significant pressure generation and void propagation and therefore reduce the likelihood of rapid failure propagation.