ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
M. R. Mataušek
Nuclear Science and Engineering | Volume 53 | Number 4 | April 1974 | Pages 440-457
Technical Paper | doi.org/10.13182/NSE74-A23375
Articles are hosted by Taylor and Francis Online.
The loop considered consists of an equivalent downcomer and a channel divided into a heated test section and an unheated riser. The preliminary structure of the lumped-parameter model is obtained by integrating partially, over the space coordinate, the system of nonlinear partial differential equations that state the mass, energy, and momentum conservation. The same formalism, however, should not be used for specifying the final structure of the model; it is shown that in this way it is not possible to represent adequately the basic mechanism of hydrodynamic instability, i.e., to define the interaction between the mass velocity and the void fraction, resulting from the friction in the boiling part of the heated test section. A procedure is proposed for specifying the final structure of the lumped-parameter model that can be adequately used instead of distributed parameter models in a wide range of system parameters and operating conditions. The model SINOD is formulated in terms of four nonlinear first-order ordinary differential equations and one time lag. Since the time lag can be neglected in most analyses, the model reduces to a system of only three nonlinear first-order ordinary differential equations. An important particularity of the model is that both the steady-state and the dynamic calculations can be performed by solving the same system of differential equations. The input data are the parameters specifying the geometry of the test loop, the physical parameters of the fluid, the channel inlet, and the riser outlet pressure drop coefficients. The two-phase friction multiplier and the slip ratio correlations are arbitrary. The validity of the proposed model is examined by comparing the results with the experimental data obtained on the test loops FRÖJA, FRIGG, SKÄLAVAN, and the Halden Loop, as well as with the results obtained using the distributed parameter models HYDRO and RAMONA.