ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
J. T. Mihalczo
Nuclear Science and Engineering | Volume 53 | Number 4 | April 1974 | Pages 393-414
Technical Paper | doi.org/10.13182/NSE74-5
Articles are hosted by Taylor and Francis Online.
Cross-correlation measurements between the pulses from an ionization counter containing a 252Cf neutron source, which provided the initiators of fission chains in a neutron-multiplying assembly, and the pulses from a detector observing the particles from the fission chains leaking from the assembly were performed for unmoderated and polyethylene-moderated uranium (∼93 wt% 235U)-metal cylindrical assemblies with uranium masses varying from 12 to 160 kg and with prompt-neu-tron decay constants varying from 3 × 103 to 108 sec-1. The applicability of this randomly pulsed neutron method with 252Cf as the neutron source for the determination of the prompt-neutron decay in plutonium was investigated in experiments with unmoderated plutonium-metal assemblies with masses varying from 2.2 to 16 kg and with spontaneous fission rates from 240Pu varying from 4.5 × 104 to 8.2 × 105 fiss/sec. These assemblies included spheres and parts of spheres of plutonium with 4.5 or 20.1 at.% 240Pu. The ratio of the correlated count rate in the randomly pulsed neutron method to that in a Rossi-α method is inversely proportional to the detector efficiency and was as large as 8000 for some assemblies where both measurements were made. Thus, the randomly pulsed neutron method allowed the determination of the prompt-neutron decay without the use of a complicated pulsed-neutron source where the Rossi-α method was not practical. In assemblies for which Rossi-α measurements were also made, the prompt-neutron decay constant agreed within the precision (<1%) of the measurements with those obtained in much less time by this technique. Since the prompt-neutron decay can also be determined for plutonium-metal assemblies with ∼20 at.% 240Pu, using a californium source as small as 3000 fiss/sec, this technique can be used for the subcriticality determination for both unreflected and unmoderated uranium (93.2)- or plutonium-metal assemblies.