ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Jungchung Jung, Nobuo Ohtani, Keisuke Kobayashi, Hiroshi Nishihara
Nuclear Science and Engineering | Volume 53 | Number 4 | April 1974 | Pages 355-369
Technical Paper | doi.org/10.13182/NSE74-A23369
Articles are hosted by Taylor and Francis Online.
Discrete-ordinate neutron transport equations in x-y geometry, which are equivalent to the PL approximation, are developed for eliminating the ray effect in the usual discrete ordinate or SN method. The standard diamond difference schemes for the discrete ordinate equations developed here are studied for vacuum and periodic boundary conditions. It is shown that the difference schemes, with an exception, lead to nonsingular systems of algebraic equations. The exception, which yields singular systems of difference equations, is the case where the following condition is satisfied: “In at least one of the x and y directions, the boundary conditions are periodic, and the number of mesh intervals is even.” It is also shown that the solutions yielded by these schemes with periodic boundary conditions converge in the L2 norm to the solutions of the PL equations.