ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
Christian Aussourd
Nuclear Science and Engineering | Volume 143 | Number 3 | March 2003 | Pages 281-290
Technical Paper | doi.org/10.13182/NSE03-A2336
Articles are hosted by Taylor and Francis Online.
Complementary methods may be used to solve the neutron transport problem. When only a small amount of information is needed, the most efficient method is obviously Monte Carlo. However, when perfect knowledge of the full phase-space is required, it is worth using a deterministic technique. Nevertheless, this memory and CPU time intensive approach may soon overwhelm even the most powerful computer. To deal with these issues, an adapted mesh refinement transport scheme was developed that solely retains active areas of a geometry. The computer code Styx, built on this efficient set of numerical methods, specially designed and tuned to run on such a tree-based topology, is presented. A test case subset, representative of the wide spectrum of multidimensional applications it covers, is then analyzed.