ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
B. F. Gore, B. R. Leonard, Jr.
Nuclear Science and Engineering | Volume 53 | Number 3 | March 1974 | Pages 319-323
Technical Note | doi.org/10.13182/NSE74-A23356
Articles are hosted by Taylor and Francis Online.
Calculations have been performed which indicate the possibility of reducing below ten years the effective half-life for transmutation of massive loadings of 137Cs placed in the blanket of a controlled thermonuclear reactor (CTR). The calculations assume the cylindrical “standard blanket” geometry and neutron source (which yields a vacuum wall loading of 10 MW/m2 of 14-MeV neutrons). Significant thermal flux enhancement is obtained by (n,2n) reactions in a beryllium moderator. Gas production and induced radioactivity problems in the beryllium moderator are not much worse than in a graphite moderator. For an 80% target-zone loading of 137Cs, a transmutation rate of 290 kg per year per meter of CTR length is obtained. At this loading, the transmutation rate in roughly 1% of the length of a CTR blanket would balance the production rate in a fission reactor of the same power. Constraint of the CTR source strength to yield a wall loading of 1 MW/m2 would increase the effective half-life for 137Cs to more than 20 years.