ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K.’s NWS gets input from young people on geological disposal
Nuclear Waste Services, the radioactive waste management subsidiary of the United Kingdom’s Nuclear Decommissioning Authority, has reported on its inaugural year of the National Youth Forum on Geological Disposal forum. NWS set up the initiative, in partnership with the environmental consultancy firm ARUP and the not-for-profit organization The Young Foundation, to give young people the chance to share their views on the government’s plans to develop a geological disposal facility (GDF) for the safe, secure, and long-term disposal of radioactive waste.
B. F. Gore, B. R. Leonard, Jr.
Nuclear Science and Engineering | Volume 53 | Number 3 | March 1974 | Pages 319-323
Technical Note | doi.org/10.13182/NSE74-A23356
Articles are hosted by Taylor and Francis Online.
Calculations have been performed which indicate the possibility of reducing below ten years the effective half-life for transmutation of massive loadings of 137Cs placed in the blanket of a controlled thermonuclear reactor (CTR). The calculations assume the cylindrical “standard blanket” geometry and neutron source (which yields a vacuum wall loading of 10 MW/m2 of 14-MeV neutrons). Significant thermal flux enhancement is obtained by (n,2n) reactions in a beryllium moderator. Gas production and induced radioactivity problems in the beryllium moderator are not much worse than in a graphite moderator. For an 80% target-zone loading of 137Cs, a transmutation rate of 290 kg per year per meter of CTR length is obtained. At this loading, the transmutation rate in roughly 1% of the length of a CTR blanket would balance the production rate in a fission reactor of the same power. Constraint of the CTR source strength to yield a wall loading of 1 MW/m2 would increase the effective half-life for 137Cs to more than 20 years.