ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
G. G. Simons, T. J. Yule
Nuclear Science and Engineering | Volume 53 | Number 2 | February 1974 | Pages 162-175
Technical Paper | doi.org/10.13182/NSE74-A23342
Articles are hosted by Taylor and Francis Online.
The use of thermoluminescent dosimeters (TLDs) to determine gamma-ray heating in a zero-power fast-reactor environment is considered. Generalized cavity-ionization theory is used to determine the relationship between the gamma-ray heating in the medium and the energy deposited in a TLD placed within the medium. The relationship is a function of the composition of the TLD and the surrounding medium, the size of the TLD, and the gamma-ray spectrum in the medium. Calculations are presented for several combinations of these variables. Data on the response of TLD materials to fast neutrons are reviewed. The fast-neutron-induced contribution to the thermoluminescent output relative to the gamma-ray-induced contribution is investigated. The relationship between the thermoluminescent response and the energy deposited in the dosimeter is also discussed.