ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
William A. Yingling, Charles J. Bridgman
Nuclear Science and Engineering | Volume 53 | Number 2 | February 1974 | Pages 123-136
Technical Paper | doi.org/10.13182/NSE74-A23338
Articles are hosted by Taylor and Francis Online.
A new approximation based on continued fractions is defined that yields simple closed-form solutions to the single-velocity time-dependent Boltzmann equation in a homogeneous, isotropic infinite medium. The approximation is developed for an isotropic Green’s function source with both absorption and scatter. The method is based on the development of the complete continued fraction solution of the infinite set of time-dependent P-N equations in transform space. The approximation then consists of truncating the continued fraction after a number of terms, which is shown to be equivalent to the standard P-N approximation; then, unlike the standard P-N approximation, the discarded portion of the continued fraction is replaced with a closed function. For low-order approximations, the result can be successfully inverted, yielding useful closed-form approximate solutions which demonstrate excellent temporal and spatial resolution, particularly near the wave front. Both spherically symmetric and one-dimensional plane geometries are treated. In spherical geometry, the approximation offers a closed-form solution for the time-dependent flux emanating from a point source in a scattering medium such as is of current interest in atmospheric transport studies. In an example presented in this paper, a low-order continued fraction approximation does exhibit a wave front and compares well with a time-dependent numerical calculation (TDA). In plane geometry, the method offers closed-form approximate solutions which may be of interest in the study of neutron waves. An example is presented and compared to a numerical evaluation of an exact solution by Erdmann. The continued fraction approximation compares favorably with Erdmann’s data and can be easily evaluated at positions other than the spatial origin. Finally, in the case of reduction to steady state, the continued fraction approximation predicts fluxes which closely approximate the asymptotic portion of an exact solution presented years ago by Case, de Hoffmann, and Placzek.