ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
Dermott E. Cullen
Nuclear Science and Engineering | Volume 53 | Number 1 | January 1974 | Pages 93-106
Technical Paper | doi.org/10.13182/NSE74-A23332
Articles are hosted by Taylor and Francis Online.
An iterative method is proposed for solving the homogeneous (i.e., critical) or inhomogeneous (i.e., source) linear integral Boltzmann equation for general geometry. By using successive approximations, these two classes of problems are shown to be mathematically equivalent. For the homogeneous problem, constraints on the algorithm regarding the existence of eigenvalues and the initial approximation are investigated. The algorithm is applied to isotropically scattering slabs and spheres and is compared to previously published results as well as to an independent extrapolation method., For the inhomogeneous problem, an improvement over the normal successive collision method via the use of a Neumann series expansion is used to allow economic parametric studies. Constraints on the algorithm and methods of efficiently terminating the infinite Neumann series are investigated. The solution via the proposed method as applied to isotropically scattering slabs and spheres is provided in a compact form for a range of multiplication factors and optical dimensions. The shape of the scalar flux distribution is explained., Extensions of the method to more complex problems are outlined; in particular, the solution to an energy-dependent problem in general geometry is obtained and the implications of the results are discussed.