ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
D. C. Hunt, Robert E. Rothe
Nuclear Science and Engineering | Volume 53 | Number 1 | January 1974 | Pages 79-92
Technical Paper | doi.org/10.13182/NSE74-A23331
Articles are hosted by Taylor and Francis Online.
In evaluating fissile-material recovery operations involving metal salvage immersed in a reagent, a criticality safety engineer must be able to identify systems of minimum critical mass. Further, he must know the effect on the reproduction factor caused by changes in process variables such as container size or the fissile concentration of the reagent. This paper reports no new experimental results but studies the criticality aspects of fissile-metal immersion by analyzing the most applicable of the existing measurements. The results are expressed in terms of the critical mass of the metal region (excluding the mass of fissile material in solution) as a function of the fissile concentration and dimensions of the liquid cylinder., The analysis indicates that the critical mass of practical combinations of uranium metal and uranium solution always exceeds that of an 18.7-g/cm3, 93.2% 235U-enriched uranium sphere centered in a 300-g/liter metal-water mixture. The corresponding conservative approximation for plutonium systems holds for a 19.7-g/cm3, 95% 239Pu sphere in a 200-g/liter metal-water mixture. The upper limit of applicability of these results is 500 g/liter for both plutonium and uranium systems. The calculational techniques described in this paper underestimate critical masses of uranium by ∼5%; the calculated masses of plutonium are sufficiently overestimated to be conservative in practical applications.