ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
D. C. Hunt, Robert E. Rothe
Nuclear Science and Engineering | Volume 53 | Number 1 | January 1974 | Pages 79-92
Technical Paper | doi.org/10.13182/NSE74-A23331
Articles are hosted by Taylor and Francis Online.
In evaluating fissile-material recovery operations involving metal salvage immersed in a reagent, a criticality safety engineer must be able to identify systems of minimum critical mass. Further, he must know the effect on the reproduction factor caused by changes in process variables such as container size or the fissile concentration of the reagent. This paper reports no new experimental results but studies the criticality aspects of fissile-metal immersion by analyzing the most applicable of the existing measurements. The results are expressed in terms of the critical mass of the metal region (excluding the mass of fissile material in solution) as a function of the fissile concentration and dimensions of the liquid cylinder., The analysis indicates that the critical mass of practical combinations of uranium metal and uranium solution always exceeds that of an 18.7-g/cm3, 93.2% 235U-enriched uranium sphere centered in a 300-g/liter metal-water mixture. The corresponding conservative approximation for plutonium systems holds for a 19.7-g/cm3, 95% 239Pu sphere in a 200-g/liter metal-water mixture. The upper limit of applicability of these results is 500 g/liter for both plutonium and uranium systems. The calculational techniques described in this paper underestimate critical masses of uranium by ∼5%; the calculated masses of plutonium are sufficiently overestimated to be conservative in practical applications.