ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
W. Jaschik, L W. Seifritz
Nuclear Science and Engineering | Volume 53 | Number 1 | January 1974 | Pages 61-78
Technical Paper | doi.org/10.13182/NSE74-A23330
Articles are hosted by Taylor and Francis Online.
A sophisticated model is presented for the calculation of prompt-response self-powered neutron (SPN) detectors used for stationary as well as nonstationary neutron flux measurements in nuclear reactor cores. The technique recommended for calculating the unit sensitivity in terms of A/(cm) per unit flux takes the following into account:, neutron self-shielding factor of the emitter, flux depression correction, Compton and photoelectron production rate due to self-absorption of the gamma-ray cascade emitted immediately after neutron capture, electron escape probability from the emitterm, loss of electron energy within the emitter, range of the electrons in the insulator which contains a space-charge electric field., Calculated thermal and fast unit sensitivities in a typical light-water-reactor neutron spectrum for four potential prompt-response SPN detectors, whose emitters consist of cobalt, cadmium, erbium, and hafnium, are compared with experimental data and are found to be in satisfactory agreement.